

## Passive MMIC 31.5-35 GHz Bandpass Filter

## **1** Device Overview

#### **1.1 General Description**

The MFB-3325 is a passive MMIC bandpass filter. It is a low loss narrowband integrated filter that passes Ka-Band frequencies (31.5-35GHz). Passive GaAs MMIC technology allows production of smaller filter constructions that replace larger form factor circuit board constructions. Tight fabrication tolerances allow for less unit to unit variation than traditional filter technologies. The MFB-3325 is available as a wire bondable chip. Low unit to unit variation allows for accurate simulations using the provided S2P file taken from measured production units.

# MFB-3325



Bare Die

#### 1.2 Features

- Designed for Ka-Band Applications
- Insertion Loss Typically 2.5dB at Center Frequency
- Excellent Return Loss
- High Stop Band Suppression
- Wide Stop Band
- <u>S2P</u> data available

### 1.3 Functional Block Diagram



#### 1.4 Part Ordering Options<sup>1</sup>

| Part<br>Number | Description       | Package | Green Status | Product<br>Lifecycle | Export<br>Classification |
|----------------|-------------------|---------|--------------|----------------------|--------------------------|
| MFB-3325CH     | Wire bondable die | СН      | RoHS         | Active               | EAR99                    |

<sup>&</sup>lt;sup>1</sup> Refer to our <u>website</u> for a list of definitions for terminology presented in this table.



www.markimicrowave.com

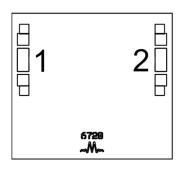
## MFB-3325

# Table of Contents

| 1 | D   | evice Overview                   | 1 |
|---|-----|----------------------------------|---|
|   | 1.1 | General Description              | 1 |
|   | 1.2 | Features                         | 1 |
|   | 1.3 | Functional Block Diagram         | 1 |
|   | 1.4 | Part Ordering Options            | 1 |
| 2 | P   | ort Configurations and Functions | 3 |
|   | 2.1 | Port Diagram                     | 3 |
|   | 2.2 | Port Functions                   | 3 |
| З | S   | pecifications                    | 4 |
|   | 3.1 | Absolute Maximum Ratings         | 4 |
|   | 3.2 | Package Information              | 4 |
|   |     |                                  |   |

|   | 3.3 Electrical Specifications  |       |                             |  |  |  |  |
|---|--------------------------------|-------|-----------------------------|--|--|--|--|
|   | 3.4 Typical Performance Plots5 |       |                             |  |  |  |  |
|   | 3                              | 3.4.1 | Insertion Loss5             |  |  |  |  |
|   | 3                              | 3.4.2 | Return Loss & Group Delay 5 |  |  |  |  |
| 4 | [                              | Die M | ounting Recommendations6    |  |  |  |  |
|   | 4.1 Mounting and Bonding       |       |                             |  |  |  |  |
|   | Re                             | comm  | endations6                  |  |  |  |  |
|   | 4.2 Bonding Diagram6           |       |                             |  |  |  |  |
|   | 4.3                            | 3 Han | dling Precautions7          |  |  |  |  |
| 5 | ľ                              | Mecha | nical Data7                 |  |  |  |  |
|   | 5.1                            | CH    | Package Outline Drawing7    |  |  |  |  |
|   |                                |       |                             |  |  |  |  |

#### **Revision History**


| Revision Code | Revision Date | Comment         |  |
|---------------|---------------|-----------------|--|
| -             | February 2019 | Initial Release |  |



# 2 Port Configurations and Functions

### 2.1 Port Diagram

A top-down view of the MFB-3325CH package outline drawing is shown below. The MMIC bandpass filters are symmetrical allowing Port 1 or Port 2 to be used as the input.



#### 2.2 Port Functions

| Port   | Function                                                                                        | Description                           | Equivalent Circuit |
|--------|-------------------------------------------------------------------------------------------------|---------------------------------------|--------------------|
| Port 1 | Input/Output                                                                                    | Port 1 is DC open for the CH package. | P1 ∽}              |
| Port 2 | Input/Output                                                                                    | Port 2 is DC open for the CH package. | <b>P2</b> ∽}       |
| Pad    | Pad Ground CH package ground path is provided<br>through the substrate and ground bond<br>pads. |                                       | Pad⊶               |



# **3** Specifications

#### 3.1 Absolute Maximum Ratings

The Absolute Maximum Ratings indicate limits beyond which damage may occur to the device. If these limits are exceeded, the device may be inoperable or have a reduced lifetime.

| Parameter                   | Maximum Rating | Units |
|-----------------------------|----------------|-------|
| Port 1 DC Current           | N/A            | mA    |
| Port 2 DC Current           | N/A            | mA    |
| Power Handling, at any Port | +TBD           | dBm   |
| Operating Temperature       | -55 to +100    | °C    |
| Storage Temperature         | -65 to +125    | °C    |

#### 3.2 Package Information

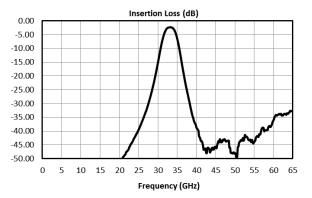
| Parameter | Details                                              | Rating |
|-----------|------------------------------------------------------|--------|
| ESD       | Human Body Model (HBM), per MIL-STD-750, Method 1020 | TBD    |

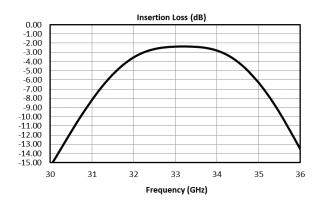
### 3.3 Electrical Specifications

The electrical specifications apply at  $T_A{=}{+}25^\circ\text{C}$  in a 50 $\Omega$  system.^{23}

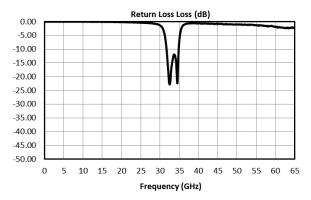
Min and Max limits are guaranteed at  $T_A$ =+25°C.

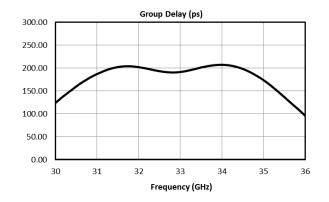
| Parameter                              | Frequency<br>(GHz) | Min      | Тур.     | Max |
|----------------------------------------|--------------------|----------|----------|-----|
| Center Frequency, f <sub>c</sub> (GHz) |                    |          | 33.25    |     |
| 1dB Passband (GHz)                     |                    |          | 32-34.3  |     |
| Insertion Loss @ $f_c$ (dB)            |                    |          | 2.5      | 4   |
| Passband Return Loss (dB)              | 31.5-35            |          | 15       |     |
| Stopband Suppression (dB)              | 25<br>26.5, 39.5   | 35<br>25 | 40<br>35 |     |
| Group Delay (ps)                       |                    |          | 197      |     |
| Impedance (Ω)                          |                    |          | 50       |     |


<sup>&</sup>lt;sup>2</sup> Filter is symmetrical. Reverse measurement is equivalent to forward measurement.


 $<sup>^3</sup>$  All measured data is taken and simulations assume 50  $\Omega$  probes on chip.




# 3.4 Typical Performance Plots


#### 3.4.1 Insertion Loss





#### 3.4.2 Return Loss & Group Delay

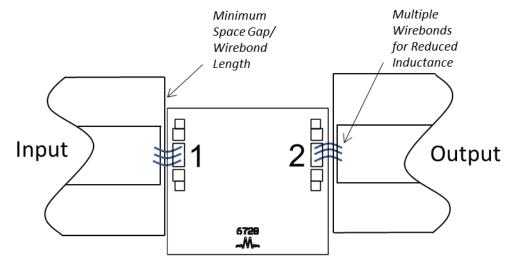






# 4 Die Mounting Recommendations

#### 4.1 Mounting and Bonding Recommendations


Marki MMICs should be attached directly to a ground plane with conductive epoxy. The ground plane electrical impedance should be as low as practically possible. This will prevent resonances and permit the best possible electrical performance. Datasheet performance is only guaranteed in an environment with a low electrical impedance ground.

**Mounting** - To epoxy the chip, apply a minimum amount of conductive epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip. Cure epoxy according to manufacturer instructions.

**Wire Bonding** - Ball or wedge bond with 0.025 mm (1 mil) diameter pure gold wire. Thermosonic wirebonding with a nominal stage temperature of 150 °C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Use the minimum level of ultrasonic energy to achieve reliable wirebonds. Wirebonds should be started on the chip and terminated on the package or substrate. All bonds should be as short as possible <0.31 mm (12 mils).

**Circuit Considerations** – 50  $\Omega$  transmission lines should be used for all high frequency connections in and out of the chip. Wirebonds should be kept as short as possible, with multiple wirebonds recommended for higher frequency connections to reduce parasitic inductance. In circumstances where the chip more than .001" thinner than the substrate, a heat spreading spacer tab is optional to further reduce bondwire length and parasitic inductance.

### 4.2 Bonding Diagram

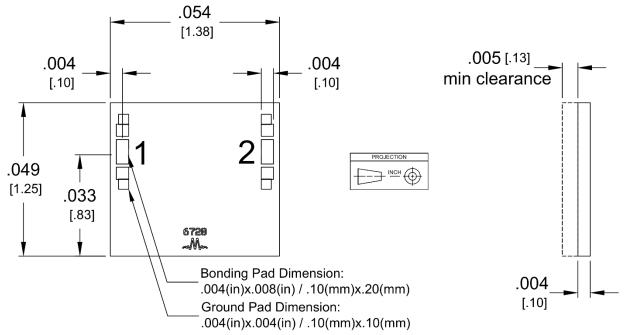






#### 4.3 Handling Precautions

#### **General Handling**


Chips should be handled with care using tweezers or a vacuum collet. Users should take precautions to protect chips from direct human contact that can deposit contaminants, like perspiration and skin oils on any of the chip's surfaces.

#### Static Sensitivity

GaAs MMIC devices are sensitive to ESD and should be handled, assembled, tested, and transported only in static protected environments.

**Cleaning and Storage**: Do not attempt to clean the chip with a liquid cleaning system or expose the bare chips to liquid. Once the ESD sensitive bags the chips are stored in are opened, chips should be stored in a dry nitrogen atmosphere.

# 5 Mechanical Data



#### 5.1 CH Package Outline Drawing

1. CH Substrate material is 0.004 in thick GaAs.

2. I/O trace finish is 5 microns Au. Ground plane finish is 4 microns Au.

Marki Microwave reserves the right to make changes to the product(s) or information contained herein without notice. Marki Microwave makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Marki Microwave assume any liability whatsoever arising out of the use or application of any product.

© Marki Microwave, Inc.