Enabling Precise Timing Control in SDRs

Srikanth Pagadarai

Systems Applications Engineer, Analog Devices

AHEAD OF WHAT'S POSSIBLE™

GNURADIO THE FREE & OPEN SOFTWARE RADIO ECOSYSTEM

Outline

- Motivating Examples
- ADRV9361-Z7035
- Loopback Delay Estimation Algorithm
- Reference Design
- Performance Results

Motivating Examples

3 // 19 September 2019

Digital Pre-Distortion

AD9361 Tx Power Monitor

Available in TDD mode only.

5 // 19 September

2019

- Multiplexed in the Rx chain after LNA.
- Inputs require matching network, built into \geq AD9361-Z7035 RF-SOM.
- Local oscillator signal used to downconvert \geq TPM input is Tx LO.

ADRV9361-Z7035 Architecture: A Short Summary

GRCon

2019

ADRV9361-Z7035 Architecture: A Short Summary

- The most compelling use case for a ADRV9361-Z7035 is to use PS and PL in conjunction for signal processing.
- MW IPcore devices accessible through libiio.
- AXI MM registers utilized in the design are written to/read from using a GR application using libiio.

Design Flow

- Development, modeling and simulation of communications algorithms
- Testing and verification of algorithms with real-world data
 - Streaming from RF hardware
- Deployment of communications system to hardware for prototyping and production
 - Fixed-point implementation

19 Septembe

2019

8 //

Code generation and Targeting

Loopback Delay Estimation Algorithm

- A correlation-based approach.
- Amplitude difference function of input and feedback signals are computed as follows:
 D[v(n)] = sign[|v(n)| - |v(n - 1)|]
- Autocorrelation of the resultant signals: $R(m) = \sum_{i=1}^{M} D[v_{in}(i-m)]D[v_{fb}(i)]$
- Find index where peak appears.

GRCon

©2019 Analog Devices, Inc. All rights reserved.

Both integer and fractional loopback delay estimation are implemented on the host. \succ

11 // 19 September 2019

Integer loopback delay estimation is implemented in FPGA, whereas fractional loopback delay is \geq implemented in GNU Radio on the host.

> Transmit data is read using a GR application in ARM.

ANALOG DEVICES

GRCon

©2019 Analog Devices, Inc. All rights reserved.

- > Loopback delay algorithm deployed on FPGA.
- > Three cables of different lengths tested to determine accuracy of algorithm.

Mean Loopback Delay

	Cable Length = 8 in	Cable Length = 10 in	Cable Length = 16 in
Sample Rate = 3 MSPS	0.52 µs	0.72 μs	1.1 µs
Sample Rate = 6 MSPS	0.54 µs	0.75 µs	1.06 µs
Sample Rate = 9 MSPS	0.51 µs	0.74 µs	1.04 µs
Expected	0.434 µs	0.612 µs	0.946 µs

Std. Dev of Loopback Delay

	Cable Length = 8 in	Cable Length = 10 in	Cable Length = 16 in
Sample Rate = 3 MSPS	0.02 µs	0.02 µs	0.03 µs
Sample Rate = 6 MSPS	0.02 µs	0.03 µs	0.04 µs
Sample Rate = 9 MSPS	0.03 µs	0.02 µs	0.02 µs

- > A delta of the order of tenths of μ s observed between observed and theoretical value.
- > Possibly due to the on-chip interconnects, propagation through DSP etc.

15 //

©2019 Analog Devices, Inc. All rights reserved.

©2019 Analog Devices, Inc. All rights reserved.

Q &A

Thank you! Visit our booth for a demo.

18 // 19 September 2019