

Ultra Wide Band Low Noise Amplifier 0.01GHz-22GHz

Product Description

RLNA00G20GA is a wide band low noise amplifier with a frequency range of 0.01 to 22GHz.

The power output of this amplifier is 28dBm typical. The typical gain is 26dB with a flatness of $\pm 1.0 \text{dB}.$

The working temperature of this product is between - 40 °C and + 85 °C.

Features

- Ultra Wide Band Low Noise Amplifier
- · Gain 26dB Typical
- P1dB Output Power 28dBm Typical
- Supply Voltage +12VDC
- 50 Ohm Matched Input/Output
- Low Noise Figure +3.5dB Typical

Electrical Specifications (T₄=+25°C)

Gain Flatness +/-1.0dB

Typical Applications

- Wireless Infrastructure
- Military and Aerospace Applications
- Test Instrumentation
- Radar Systems
- 5G Wireless Communications
- Microwave Radio Systems
- TR Modules
- Research and Development
- Cellular Base Stations

Pa	rameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Frequ	iency Range	0.01		6	6		20	20		22	GHz
Gain		24	28		25	27		25	27		dB
Gain Flatness			±2.0			±1.0	±1.5		±1.0	±1.5	dB
Gain Variation Over Temperature (-40°C~+85°C)			±1.0			±1.2			±1.5		dB
Noise Figure			3.0			2.8	4.0		3.5	4.5	dB
Input VSWR			1.8			1.4	1.8		1.5	1.8	: 1
Output VSWR			2			1.8			1.8		: 1
Output 1dB Compression Point (P1dB)		23.5	25.5		23	26		21	23		dBm
Saturated Output Power (Psat)			27			28			26.5		dBm
Output Third Order Intercept (OIP3)			32			34			32		dBm
Supply Current (Vcc=+12V)			580	750		580	750		580	750	mA
Isolation S12			-50			-65			-60		dB
Weight	Net		3.9 Max. 6.1 Max.						- Ounce		
	Including Heat Sink										
Impedance						50					Ohm
Input / Output Connectors		SMA-Female(Input)-SMA-Female(Output)									
Package		Epoxy Sealed (Standard)									
		Hermetically Sealed (Optional)									

Absolute Maximum Ratings

Parameter	Rating
Operating Voltage	+15V
*RF Input Power (RFIN)	+6dBm

Bias Up Procedure

Bias Down Procedure

1. Connect ground

2. Connect input and output with 50 Ohm source/load. (In band VSWR < 1.9:1 or >10dB return loss.)

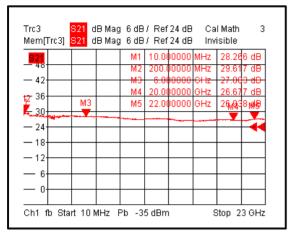
3. Connect positive supply and make sure power supply can handle max current.

1. Turn off power supply and remove positive supply

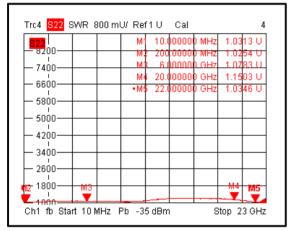
2. Disconnect input and output with 50 Ohm source/load. (In band VSWR < 1.9:1 or >10dB return loss.)

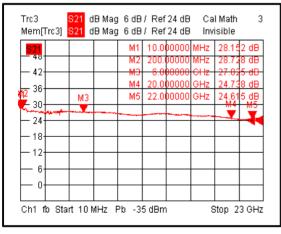
3. Remove ground

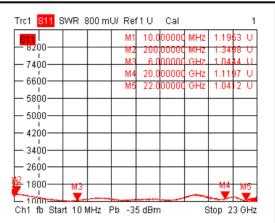
Environmental Specifications and Test Standards

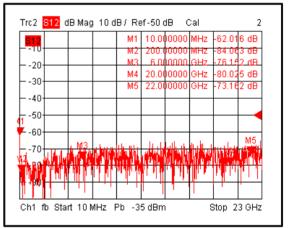

Parameter	Description		
Operational Temperature	-40°C to +85°C (Case Temperature)		
Storage Temperature	-50°C to +105°C		
Thermal Shock	-40°C → +85°C (5 Cycles / 10 hours)		
**Random Vibration	MIL-STD-202G Table 214-I, Test Condition Letter C 1.5 Hours Per Axis		
High Temperature Burn In	Temperature +85°C for 72 Hours		
Shock	 Weight >20g, 50g half sine wave for 11ms, Speed variation 3.44m/s Weight <=20g, 100g Half sine wave for 6ms, Speed variation 3.75m/s Total 18 times (6 directions, 3 repetitions per direction). 		
Altitude	Standard: 30,000 Ft (Epoxy Sealed Controlled Environment) Optional: Hermetically Sealed (60,000 ft. 1.0 PSI min)		
Hermetically Sealed (Optional)	MIL-STD-883 (For Hermetically Sealed Units)		

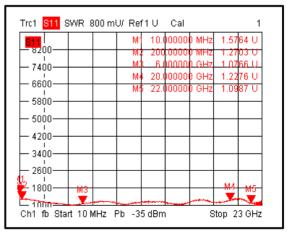
*Maximum RF input power is set to assure safety of amplifier. Input power may be increased at own risk to achieve full power of amplifier. Please reference gain and power curves.


**For vibration testing details please see additional information section.


Gain@+25℃

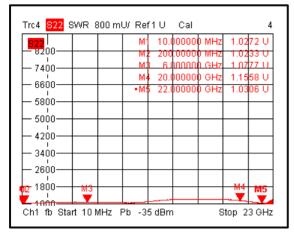

Output VSWR @+25°C


Gain @-40°C

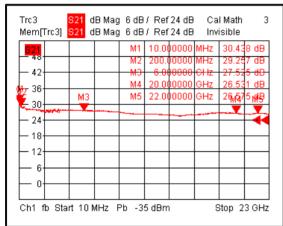

Input VSWR @+25°C

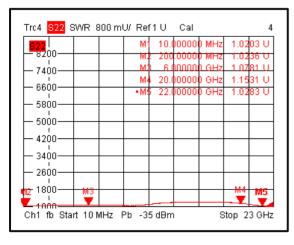
Isolation@+25°C

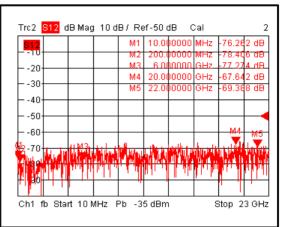
Input VSWR @-40°C

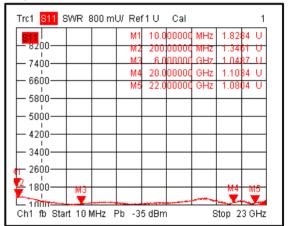


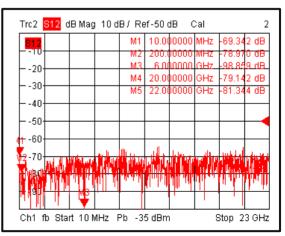
Note: Small signal VNA measurements include attenuators to protect equipment


RLNA00G20GA


Output VSWR @-40°C

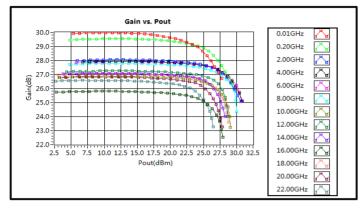

Gain@+85°C


Output VSWR @+85°C

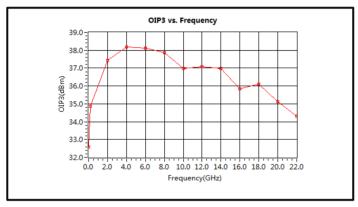


Isolation @-40°C

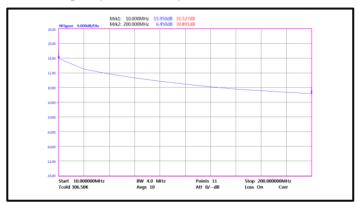
Input VSWR @+85°C

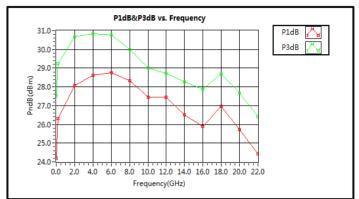

Isolation@+85°C

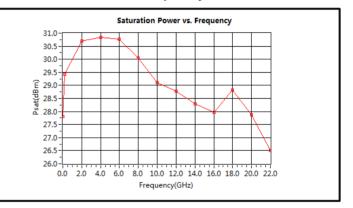
Note: Small signal VNA measurements include attenuators to protect equipment

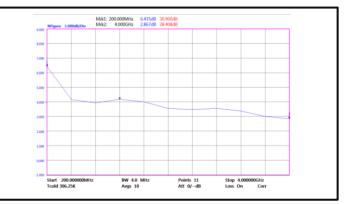


RLNA00G20GA

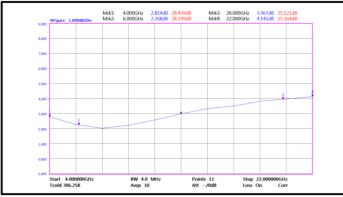

Gain vs. Output Power

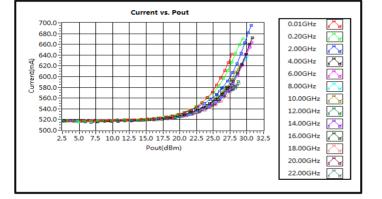

Output Third Order Intercept (OIP3)

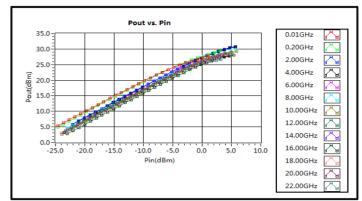

Noise Figure(0.01-0.2GHz)


P1dB & P3dB vs. Frequency

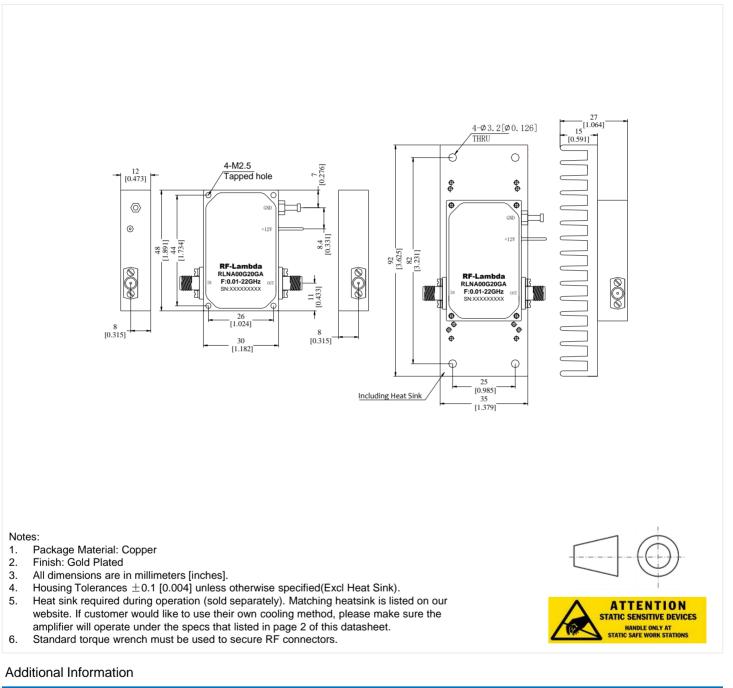
Saturation Power vs. Frequency


Noise Figure(0.2-4GHz)




Noise Figure(4-22GHz)

Current vs. Pout


Pout vs. Pin

RLNA00G20GA

Outline Drawing

Documentation	Webpage		
ESD Policy	https://rflambda.com/pdf/rflambda_esd_control.pdf		
Heatsink Lookup Specifications	https://rflambda.com/search_heatsink.jsp		
Connector Torque Specifications	https://www.rflambda.com/pdf/Torque_Specifications.pdf		
Random Vibration Test Standard	https://www.rflambda.com/pdf/rflambda_random_vibration_MIL-STD-202G.pdf		

Ordering Information

Part Number	Modification	Description
RLNA00G20GA	Standard	0.01GHz-22GHz Low Noise Amplifier

Amplifier Use

Ensure that the amplifier input and output ports are safely terminated into a proper 50 ohm load before turning on the power. Never operate the amplifier without a load. A proper 50 ohm load is defined as a load with impedance less than 1.9:1 or return loss larger than 10dB relative to 50 Ohm within the specified operating band width.

Power Supply Requirements

Power supply must be able to provide adequate current for the amplifier. Power supply should be able to provide 1.5 times the typical current or 1.2 times the maximum current (whichever is greater).

In most cases, RF - Lambda amplifiers will withstand severe mismatches without damage. However, operation with poor loads is discouraged. If prolonged operation with poor or unknown loads is expected, an external device such as an isolator or circulator should be used to protect the amplifier.

Ensure that the power is off when connecting or disconnecting the input or output of the amp.

Prevent overdriving the amplifier. Do not exceed the recommended input power level.

Adequate heat-sinking required for RF amplifier modules. Please inquire.

Amplifiers do not contain Thermal protection, Reverse DC polarity or Over voltage protection with the exception of a few models. Please inquire.

Proper electrostatic discharge (ESD) precautions are recommended to avoid performance degradation or loss of functionality.

What is not covered with warranty?

Each RF - Lambda amplifier will go through power and temperature stress testing. Since the die, ICs or MMICs are fragile, these are not covered by warranty. Any damage to these will NOT be free to repair.

Important Notice

The information contained herein is believed to be reliable. RF-Lambda makes no warranties regarding the information contained herein. RF-Lambda assumes no responsibility or liability whatsoever for any of the information contained herein. RF-Lambda assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for RF-Lambda products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

RF-Lambda products are not warranted or authorized for use as critical components in medical, life-saving, or life sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.